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higher densities for each metal. There is thus no anomalous behaviour in the 
high temperature resistivity of rubidium as described by MacDonald (1952). The 
effects that he found can almost certainly be ascribed to capillary constraints in 
his specimens. 

Bailyn (1960) has calculated the temperature dependence ofthe resistivity of all 
the alkali metals. He found reasonable agreement with experiment for caesium 
and poor agreement for the others. (For lithium the agreement was good but, as 
already mentioned, the model used was not strictly appropriate to this metal.) 
Bailyn was inclined to attribute this poor agreement to the phonon spectra he 
used. The values he adopted for the anisotropy parameters are shown in table 11, 
together with the experimental values where these are known. It seems that his 
values of the anisotropy for sodium and potassium were indeed too large and this 
may account for much of the discrepancy. The more recent calculations of Bross & 
Holz (1963) and of Hasegawa (1964) used the neutron data on sodium and the 
specific heats as a check on their calculated dispersion relations. They then found 
reasonably good agreement with experiment for the temperature dependence of the 
resistivity of sodium, potassium and lithium. (For lithium the fact that the Fermi 
surface is not spherical had to be taken into account.) 

Working more directly from the neutron data, Darby & March (1964) also found 
reasonable agreement for sodium. Still more recently Greene & Kohn (1965) have 
calculated the temperature dependence of the resistivity of sodium using the 
neutron data directly to give information about the motion of the ions. They have 
made what are probably the most refined calculations so far and find some dis
agreement with experiment. They discuss whether the discrepancy could be due 
to non-equilibrium of the phonons, although they think this unlikely. By com
paring their results with those of Darby & March they conclude that anharmonic 
effects are important, in particular the change in elastic constants with tempera
ture, and when they take this into account they find agreement with experiment 
within an accuracy of about ± 20 %. 

It seems therefore that although the agreement for sodium is not as complete as 
might have been expected these calculations are generally speaking successful. 
We may therefore expect that when we know the phonon dispersion curves for 
rubidium and caesium it will then be possible to calculate successfully the tem
perature dependence of their resistivities. 

4·4. How the resistivity depends on pressure 

At high temperatures (T > ()o) we may think of the resistivity as proportional 
to the square of the amplitude of the lattice vibrations and write for the ideal 
resistivity p" at temperature T /M() • Pi = KT 2, (1) 

where M is the mass of the ions, () is the characteristic temperature of the lattice 
and K represents all the factors associated with the interaction of the electrons 
with the lattice waves. We may then write 

(
8 In Pi) d In K 
a In v T = 21'0 + d In V · 
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In this we have assumed that the changes in the amplitude of the lattice vibrations 
can be taken account ofthrough the Griineisen parameter Yo' In table 14 we have 
listed the values of d In Kid In V calculated in this way. Yo has been evaluated 
from the thermal expansion, compressibility and specific heat of the solid. For 
rubidium and caesium some of these data are rather uncertain. 

At low temperatures the ideal resistivity varies more strongly with temperature 
than at high temperatures (approximately as To at the lowest temperatures). 
This means in effect that Pi depends more strongly on the amplitude of the lattice 
vibrations at low temperatures than at high. We may therefore expect that this 
will also show up in the pressure dependence of Pi (since pressure also changes the 
amplitude of the lattice vibrations) and that the pressure coefficient of Pi will 

TABLE 14 

8Inp, _~(8V) ~(8V) 
8p V 8p T 8Inp, V aT p dInK dInKt 

O°C O°C 8In V O°C dIn V dIn V 
metal (10-5 atm- 1) (10-5 atm-1) O°C (10-5 per °C) Y~ (expt.) (theory) 

lithium 
p=O +0·43 0.875 -0·49 14} 0'90 {~2.3} -3·7 V =Vo 

sodium 
p=O -7·3 1·58 4·6 21} 1-3 {2'0} 1·8 
V=Vo -6·2 HO 4'48 1·8 

potassium 
p=O -19-1 3·43 5·6 25} 1·3 rO} 1·9 
V=Vo -15·8 2·82 5·6 3·0 

rubidium 
p=O -21 5'0 4· 24} {2·s ~ 1'0 V=Vo -17 3'6 4·, 2·, 

caesium 
p=O -22 7.

1 3.1 29} 1'0 {1'1 

V=Vo -14 4.
4 3.2 1'2 

* The data are not available to calculate YG at V = Vo so we have assumed that the values 
at p = 0 and at V = Vo are the same. 

t Hasegawa (1964)· 

become more negative at low temperatures. This effect can be seen in figure 6 
which shows how the pressure coefficient of ideal resistivity (at constant density.) 
varies with temperature for all the alkali metals. (The data for lithium, sodium 
and potassium are taken from I .) As already stressed, the very low temperature 
values tend to be uncertain because of departures from Matthiessen's rule. 
Nevertheless, the tendency to become more negative at low temperatures in 
rubidium and caesium (as in the other metals) is clearly evident and qualitatively 
reliable. At higher temperatures the coefficient tends to be constant; the changes 
near room temperature may be real or they may be only a consequence of using 
slightly wrong data for the equation of state. 

To show how the resistivity of the alkali metals varies with pressure over a 
wider pressure range, we show in figure 7 the relative resistivity p/Po as a 


